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We study effects of the running of the coupling in QCD at small Bjorken-
x and in particular the ones related to gluon saturation. After introducing
the steps taken to the derivation of the next to leading order nonlinear evo-
lution equation, we discuss the infrared sensitivity of the Pomeron intercept,
the energy dependence of the saturation momentum and the appearance
of geometrical scaling, and the dominance of the running coupling effects
over the ones introduced by loops of Pomerons.
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1. Short introduction and outline

One of the main active fields of research in Quantum Chromodynamics
is the study of its behavior in the high energy limit. In general, a scattering
process is considered as a high energy one, when the square of the total
energy s of the colliding objects is much larger than the momentum transfer
Q2 between them. Then one hopes to approach the problem via analytical
methods, since in this limit there is the possibility of a large kinematical
window s ≫ Q2 ≫ Λ2

QCD where one can apply weak coupling methods.

In lepton-hadron deep inelastic scattering (DIS) the high energy limit is
equivalent to the small Bjorken-x limit since x = Q2/s.

The BFKL (Balitsky, Fadin, Kuraev, Lipatov) equation [1] is the starting
point for any approach to the high energy limit of QCD. It resums the
Feynman diagrams in perturbation theory which are enhanced by logarithms
of the energy and when the equation is solved a total cross section growing
as a power of the energy emerges. At least a posteriori this growth is not
so surprising since at high energies the wavefunction of a hadron contains a
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large number of partons, mostly gluons, due to the available phase space for
virtual fluctuations and due to the triple-gluon coupling in QCD. For such
a wavefunction description one mostly relies on the dipole picture [2] which
gives the evolution with the energy of the dipole density (and of higher
density moments) of a hadron.

However, even though QCD at high energy will be in general charac-
terized by high densities and increasing cross sections, one needs to find
a mechanism to tame the too steep increase as predicted by the BFKL
equation. The gluon density at a given momentum should saturate [3] and
never exceed a value of order O(1/α) (modulo factors which are logarith-
mic in energy) and equivalently the scattering at a given impact parameter
should not exceed unity. The BK (Balitsky, Kovchegov) equation [4, 5]
derived from QCD adds a nonlinear term to the BFKL equation leading
naturally to the fulfillment of the saturation and unitarity constraints. The
B-JIMWLK hierarchy [6–9] (Balitsky, Jalilian Marian, Iancu, McLerran,
Weigert, Leonidov, Kovner) is a specific generalization of the BK equation,
but it seems not to lead to different results [10] and therefore we will not
discuss it at all.

Saturation of parton densities might play a significant role at experi-
ments in current and future colliders. Saturation models [11, 12] and ge-
ometrical scaling [13], which is a consequence of BFKL dynamics in the
presence of saturation [14–16], are consistent with the description of the
small-x DIS data at HERA and high-p⊥ spectra in deuteron-gold collisions
at RHIC are again explained by properties of saturation [17]. One expects
the phenomenon to be more relevant at the LHC not only in proton-nucleus
collisions but also in proton-proton ones, for example in the production of
dijets separated by a large rapidity interval (Mueller-Navelet jets) [18–20].

Even though the BK equation may give a correct qualitative description,
it does not give the correct quantitative one and perhaps this is not so sur-
prising, since it corresponds to a leading order approximation. And in fact
there are two sources of large corrections, loops of Pomerons [21–24] and
next to leading order (NLO) contributions [25–27]. Both the BK and the B-
JIMWLK equations do not properly describe the hadronic wavefunction in
regimes where the density is low and fluctuations become important. Even
though we are primarily not interested in this region of phase space, the evo-
lution is nonlocal and thus is affected by these low-density high-momentum
modes. Extra terms, which give rise to the formation of Pomeron loops,
need to be added to the BK equation and these terms strongly modify the
fixed coupling evolution even at the qualitative level. In practice, however,
it just happens that when running coupling corrections are also taken into
account, the Pomeron loop effects are delayed up to super-high energies [28].

These lecture notes are based on just two one-hour presentations, and
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therefore we shall not be able to enter detailed calculations, nevertheless we
will try to show the direction to all the steps that need to be taken. Further-
more, it is assumed that the reader is already familiar with the formalism,
the concepts and the results at the level of the leading order approximation.
Otherwise we refer the reader to either the original papers or to existing
lectures and reviews [29–32]. We divide the main body of the paper in four
parts. In Sec. 2 we describe the efforts made towards the derivation of the
NLO nonlinear equation and in particular the issues related to the argu-
ment of the running of the coupling. In Sec. 3 we restrict ourselves to the
linear equation and we show, through the Pomeron intercept evaluation in a
simplified problem, how the evolution becomes sensitive to infrared physics.
In Sec. 4 we deal with the nonlinear equation and the energy dependence of
the saturation momentum. We see how geometric scaling emerges and how
physics becomes insensitive to the infrared behavior. Finally, in Sec. 5 we
compare the effects of the running of the coupling to the ones introduced
by loops of Pomerons, showing that the former dominate.

2. Towards the NLO nonlinear equation

There are various versions of the BFKL equation depending on the “ob-
servable” or the quantity considered and the representation (momentum or
coordinate space). For example one can consider the amplitude in quark-
quark scattering (in momentum space), or in dipole-dipole scattering (in
coordinate space), or the gluon density in a hadronic wavefunction, or the
dipole density in a heavy onium wavefunction. When we take into account
the nonlinear effects, there is presumably a unique route to follow, since
the corresponding evolution equations acquire a relatively simple form only
when we consider the problem of the scattering of a small in size color dipole
off a generic hadron. For this particular quantity it is also easy to give a
(not rigorous) derivation of the nonlinear equation, which also serves as a
benchmark for the derivation of the one at next to leading order.

Let us assume that we are in a frame where most of the energy is carried
by the hadron, so that the color dipole (x,y), with x and y the correspond-
ing coordinates of the quark and the antiquark, is “bare”. That is, its
wavefunction does not contain any higher order components. When the
total energy, or equivalently the rapidity difference between the two collid-
ing objects increases, we prefer to give the extra amount of energy to the
dipole. Then its wavefunction evolves in a way that we can follow and in
fact calculate. If dY = dk+/k+ is the rapidity increment, then, to lowest
order in αdY , either the quark or the antiquark emits a soft a gluon, with
k+ its longitudinal momentum. By taking into account the four diagrams
in Fig. 1, we can calculate the differential probability for the emission of the
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Fig. 1. Soft gluon emission from a color dipole.

soft gluon in the interval dY d2z, where z is the gluon position. We find [2]

dP =
ᾱ

2π

(x − y)2

(x − z)2(z − y)2
d2z dY ≡ ᾱ

2π
Mxyz d2z dY, (1)

with ᾱ = αNc/π and where Nc is the number of colors. In the multicolor
limit one can view the gluon as a quark-antiquark pair, and thus the state
of the evolved “parent” dipole consists of two “child” dipoles (x,z) and
(z,y). This two-dipole configuration scatters of the target and therefore
the change dSxy in the S-matrix for the dipole-hadron scattering will be
equal to

∫

z
dPSxzSzy. There is also a term which corresponds to diagrams

where the emitted gluon is absorbed before the scattering takes place. This
term which normalizes the dipole wavefunction is equal to −

∫

z
dPSxy and

we arrive at the first Balitsky equation [4]

∂Sxy

∂Y
=

ᾱ

2π

∫

z

Mxyz (SxzSzy − Sxy) . (2)

In principle, one should perform an average of all terms in the above equa-
tion over the target hadron wavefunction. With the mean field approxima-
tion 〈SxzSzy〉 = 〈Sxz〉〈Szy〉 we obtain a closed equation, the Kovchegov
equation [5]. Thus, in accordance with the natural conventions we refer to
(2) as the BK equation. Throughout our discussion we shall assume this
factorization to be valid, and in Sec. 5 we will try to examine whether or not
this is a good approximation1. We immediately notice that S = 1 is an un-
stable fixed point, since any small initial amplitude, defined as T = 1 − S,
will start to grow, while S = 0 is a fixed one which corresponds to the
unitarity limit.

At this leading order approximation the value of the coupling ᾱ is as-
sumed to be a small, but unknown, fixed number. This undesirable freedom
forces us to put a running coupling by hand, but we are immediately lead
to ambiguities since the evolution kernel Mxyz is nonlocal in the transverse
space, and therefore an infinite number of combinations of the parent and

1 Therefore for notational economy we do not write the average brackets.
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dipole sizes could appear as the scale of the argument of the coupling2. Thus
there is no other way out than to proceed to the calculation of higher order
corrections to the BK equation [25–27]. Nevertheless, we need to say in
advance that in general we are interested in the physics around the satura-
tion scale Qs, defined as the borderline between the region where the BFKL
equation applies and the region where nonlinear effects become important
and we approach the unitarity limits. Then we expect the dominant be-
havior of the S-matrix (and other observables) to be determined by letting
α → α(Q2

s) in the BK equation, and where Qs itself needs to be evaluated
from the same equation. If this was not the case, then one might worry
about the consistency of the whole construction. But let us postpone this
analysis until Sec. 4 and return to our original task.

In order to see what kind of contributions we need to calculate, we
expand the QCD running coupling around its value at some fixed scale µ as

α(Q2) = αµ − α2
µ β ln

Q2

µ2
+ α3

µ β
2 ln2 Q

2

µ2
− · · · , (3)

where β = (11Nc − 2Nf )/12π is the leading order QCD β-function with Nf

the number of flavors. In terms of the parameters of the theory the diagrams
in Fig. 1 are of order αµ. Diagrams with a quark-loop will be of order α2

µNf ,

diagrams with two quark loops will be of order α3
µN

2
f and so on, and match

with the order of the terms in Eq. (3). Then we sum all the αµ(αµNf )k

terms for k ≥ 1 and we let −2Nf → 11Nc−2Nf = 12πβ in order to account
for the gluon loop conributions3. Finally we can read off the scale in the
argument of the coupling and in order to obtain that properly it should be
clear from the above that we need to focus in logarithmic contributions, like
the ones in Eq. (3), in the transverse space.

There are two classes of diagrams of order α2Nf as shown in Fig. 2. The
first class, shown in the left panel of the figure, contains typical running
coupling corrections; the soft gluon splits into a q-q̄ pair which recombines
before the time of interaction and thus the state at that time is the same as
in the leading order case. Thus, from diagrams of this type we expect just a
modification to the kernel of the leading order equation. In the second class
of diagrams, shown in the right panel of the figure, the soft gluon splits into
a q-q̄ pair which does not recombine and therefore, when compared to the
leading order, we have a new state at the time of interaction. Thus, the full
NLO equation will have a more complicated structure which will involve a

2 Notice that this is in sharp contrast to the situation encountered in the DGLAP
equations; in that case the object of interest is a parton distribution function f(x, Q2),
with Q2 a resolution scale. The evolution is local in the transverse space and thus
Q2 arises naturally as the scale in the argument of the running coupling.

3 The gluon loop contribution has already been calculated [27].
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Fig. 2. Left: Typical NLO diagram containing running coupling corrections. Right:

Typical NLO diagram giving rise to a new state at the time of interaction.

double two-dimensional integration over the transverse coordinates z1 and
z2 of the quark and the antiquark of the pair. At a first glance it seems that
these diagrams do not contribute to the running of the coupling, however
this is not true as we will shortly see.

Let us first consider the “simple” diagrams of the first class. While we
can integrate over the longitudinal momentum in the loop, the integration
over the transverse momentum k2 is UV divergent. Using, for example,
dimensional regularization and at the end letting 1/ǫ → lnµ2 [25] we find
the desired contribution to the running of the coupling.

Turning our attention to the more “complicated” diagrams of the sec-
ond class let us see what happens when the pair shrinks to a point, which
means that the loop transverse momentum becomes very large. Perhaps not
unexpectedly, since it is hard to distinguish a zero-size pair from a gluon,
we find that in this limit the diagram diverges and in fact this UV behav-
ior also contributes to the running of the coupling. Therefore we subtract
this divergent piece from the diagram in order to obtain a UV finite result
which corresponds to the new channel. Then we add it again to find the
contribution to the running of the coupling.

The issue here is that there is not a unique way to do this separation
of the infinities, since the “point” of subtraction can be chosen as a general
combination of the quark and antiquark positions. Of course there is no
issue regarding the NLO equation which is unique. Unfortunately it is not
a closed equation; one also needs to write an evolution equation for the
new state, which will involve another more complicated state, and so on.
On the contrary, restricting ourselves to the running coupling contributions
we obtain a closed equation which however is not unique. Since the task of
deriving the NLO equation was pursued by two different groups two different
schemes were used. Without any prejudice, but just because the equation
is more compact we shall write here (part of) the result as given in [26]. In



Running Coupling Effects in Small-x QCD 7

this “B-scheme” the NLO equation reads

∂Sxy

∂Y
=
ᾱµ

2π

∫

z

Mxyz

[

1 +
αµNf

6π
ln

e−5/3

(x − y)2µ2
+ · · ·

]

(SxzSzy − Sxy)

+ᾱµαµNf

∫

z1z2

[new state]. (4)

The second term in the square bracket of the first line corresponds to the
running coupling contribution and one may already suspect that in this
scheme the inverse of the parent dipole size sets the scale of the coupling
(but not always as we shall shortly see). The second line corresponds to
the formation and the interaction of the new state composed of the original
quark and antiquark at x and y respectively, and the emitted quark and
antiquark at z1 and z2. We will not deal with these new channel terms from
now on.

The result of [25] is slightly more complicated and the main difference
when compared to the one given above in Eq. (4) amounts to the replace-
ment

ln
1

(x − y)2µ2
→ ln

R2(r1, r2)

r2
1r

2
2µ

2
, (5)

where R(r1, r2) is a known function of r1 = x − z and r2 = z − y.
Finally we need to resum the bubble diagrams shown in Fig. 3 in order

to obtain the structure given in Eq. (3). Notice that formally these dia-
grams correspond to NnLO corrections with n ≥ 2, but their resummation
is equivalent to the setting of the scale in the coupling. At this point one
may wonder about the number of resummations that we need to perform.
The BFKL equation resumes (ᾱY )n enhanced terms, the nonlinear terms
arise from the resummation of the high density effects in the target hadron
wavefuntion, the bubble resummation is necessary to get the running cou-
pling. Furthermore, we have to mention that one may need to perform a
“pole resummation” since it is well known that the NLO BFKL kernel has a
bad collinear behavior4. Thus one may be very enthusiastic about the high
level of sophistication, but also may worry about the amount of control we
have on the results after all these manipulations.

Taking into account the bubble diagrams we arrive at the nonlinear
equation which, in the B-scheme, reads

∂Sxy

∂Y
=
ᾱ(r2)

2π

∫

z

{

Mxyz +
1

r2
1

[

α(r2
1)

α(r2
2)

− 1

]

+ 1 ↔ 2

}

(SxzSzy − Sxy) ,(6)

4 And still, after all these resummations loops of Pomerons have not been taken into
account.
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Fig. 3. Typical bubble diagrams which need to be resummed in order to set the

scale in the argument of the running coupling.

with r = x−y the parent dipole size. In this B-scheme it is straightforward
to see that the parent dipole size r sets the scale when r1 = r2, while it is
the smallest of the two child dipoles which sets the scale as r<, when r< ≪ r
(so that r> ≃ r). The latter is a very nice feature, since this is what we
expect in the collinear limit. In the scheme of [25], and in view of Eq. (5),
the r.h.s. of the nonlinear equation is proportional to the triumvirate of
running couplings

ᾱ(r2
1)ᾱ(r2

2)

ᾱ(R2)
. (7)

Before closing this Section let us comment on possible problems that we
may face because of the IR behavior of the coupling. So long as we are
at fixed order α2

µ, cf. Eq. (4), large dipoles (with size bigger than Λ−1
QCD)

need to be cut only in principle; they do not obstruct us to perform the
integrations. When bubbles are resummed, cf. Eq. (6), there is a non-
integrable singularity. We need to introduce some type of an IR cutoff and,
if we claim we have a sensible effective theory, we should be able to check
cutoff-independence at the end. This will turn out to be true thanks to
the dynamically generated saturation momentum Qs. This scale becomes
much larger than ΛQCD at high energies, and therefore the r.h.s. of the NLO
equation is extremely small when we start to approach the pole at ΛQCD.

3. Pomeron intercept and infrared sensitivity

Restricting ourselves to the linear part of the evolution equation, that
is to the BFKL equation with running coupling, we would like to find the
behavior of the dipole-hadron scattering amplitude. More precisely, given
a dipole of fixed size r, we wish to find how fast the amplitude increases
with rapidity. Here, and in the remaining Sections too, we shall neglect any
dependence on the impact parameter of the process. In analogy to the fixed
coupling problem [1] we expect an increase of the form exp(ωPY ), with ωP

to be determined. Just for reasons of simplicity in the presentation, we shall
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not try to deal with the running coupling BFKL equation, rather we will
try to solve the equation

∂T

∂Y
= α(ρ)

[

1 +

(

∂ρ +
1

2

)2
]

T ≡ α(ρ)K T, (8)

with α(ρ) the running coupling and where we have defined the logarithmic
variable ρ = ln 1/r2Λ2

QCD. We notice that the eigenfunctions exp(−γρ)
of the operator K are the same as the ones of the BFKL operator. The
eigenvalue spectrum χ̃(γ) = 1 + (γ − 1/2)2 has roughly the same shape5 as
the BFKL one, which we recall is given by χ(γ) = 2ψ(1)−ψ(γ)−ψ(1−γ) [1]
with ψ(γ) = d ln Γ(γ)/dγ; for real γ both χ and χ̃ are convex functions with
a minimum at γ = 1/2. We could choose some more general coefficients in
Eq. (8) or even a more general form, however our final conclusion would not
change.

With α = 1/ρ (we let β = 1 without any loss of generality) we can write
the general solution to Eq. (8) in terms of the Airy function. We have

T (ρ, Y ) =
∑

ω

c(ω) exp
(

ωY − ρ

2

)

Ai

(

ωρ− 1

ω2/3

)

, (9)

where c(ω) should be determined from the initial conditions. Now we need to
enforce a boundary condition to cut the infrared contributions, e.g. T (ρ0) =
const. with ρ0 > 0, and, again for simplicity, we choose this constant to be
zero. Then, for a given position of the boundary, ω can take only discrete
values which are related to the zeros −|ξn| of the Airy function. One needs
to solve a transcendental equation to determine these allowed values of ω,
but for our purposes we can simply give them in the form of the series

ωn =
1

ρ0

− |ξn|
ρ
5/3
0

+ · · · = α(ρ0) − |ξn|α5/3(ρ0) + · · · . (10)

Then our solution becomes

T (ρ, Y ) =
∞

∑

n=1

c(ωn) exp
(

ωnY − ρ

2

)

Ai
(

−|ξn| + ω1/3
n (ρ− ρ0)

)

. (11)

The rightmost zero of the Airy function at −|ξ1| = −2.33 gives the largest
value of ω, the n = 1 term dominates as Y → ∞, and therefore ω1 as
determined from Eq. (10) is the Pomeron intercept ωP. The difference in

5 In fact the spectrum of K behaves better than the BFKL one, since the latter diverges
for γ → 0, 1 violating energy conservation.
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QCD lies in the coefficients of the series expansion in Eq. (10) and the
Pomeron intercept reads [33]

ωP = 4 ln 2 ᾱ(ρ0) − |ξ1|
[

π2β2χ2(γP)χ′′(γP)

2N2
c

]1/3

ᾱ5/3(ρ0) + · · · , (12)

with γP = 1/2, χ(γP) = 4 ln 2 and χ′′(γP) = 14ζ(3). It is a simple exercise
to show that the n = 1 term dominates up to values of ρ such that ρ− ρ0 .

[α(ρ0)Y ]2/3, so that for large Y , ρ can be in the perturbative region. On
the one hand this is good, since the most one can achieve is to calculate the
amplitude for dipole sizes much smaller than 1/ΛQCD. On the other hand
our solution cannot be trusted since it depends strongly on the cutoff; the
Pomeron intercept is determined by the coupling which in turn is evaluated
at ρ0. Perhaps this should not come as a surprise, since Eq. (8) is similar
to the Schrödinger equation with an attractive linear potential.

We could have imposed something “milder” than the absorptive bound-
ary, like a coupling which freezes to a fixed value when reaching ΛQCD.
Still, diffusion to the IR takes place and for any perturbative dipole ρ≫ ρ0

the main contribution comes again from the region where the coupling is
strongest, that is from momenta of order ΛQCD. Therefore BFKL evolution
with running coupling is not self-consistent.

4. The saturation momentum and geometric scaling

Now we turn our attention to the problem of determining the satura-
tion momentum Qs(Y ), which can be defined as T (r = 1/Qs(Y )) = const.
where the constant is of order O(1) but smaller than 1, as shown in Fig. 4.
In terms of the hadronic target wavefunction, it corresponds to the bor-
derline between the low density momentum modes and the ones which are
saturated.

In order to specify the energy dependence of Qs and the form of the
amplitude for the scattering of dipoles with a size r . 1/Qs off the target
hadron, it is enough to analyze the linear equations, but with appropri-
ate boundary conditions which will play the role of the nonlinear effects
[15]. One needs to to be careful here since the boundary conditions are
Y -dependent as may be suspected from Fig. 4. Since the expectation is
that the nonlinear terms will cut the diffusion to the IR, and more precisely
to momenta (or inverse dipole sizes) smaller than Qs, one needs to put an
absorptive boundary just “behind” Qs.

For specifying the leading behavior of Qs the detailed implementation
of the boundary should not be crucial since the diffusion mechanism in the
BFKL equation is an important but subdominant effect. Furthermore we
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Fig. 4. The saturation line in the logarithmic plane. With Pomeron loops included

the evolution for determining the amplitude in the linear regime is restricted be-

tween the saturation and the critical line (see Sec. 5).

expect that the physics for momenta around Qs line should be determined
by Qs itself, otherwise our whole approach to the small-x problem would not
be very meaningful. Thus at the moment we will let α→ α(Qs) and under
this replacement it is obvious that any scheme (as introduced in Sec. 2) will
lead lead to the same answer. Therefore we shall write our linear equation
as

∂T

∂Y
=

1

βρs
χ(1 + ∂ρ)T, (13)

with the obvious notation ρs = lnQ2
s/Λ

2
QCD and the task is to find the line

ρs(Y ) along which the amplitude T is constant. There are four straightfor-
ward steps that we take: (i) we change variable from ρ to z = ρ − ρs(Y ),
(ii) we expand the function χ around the point γs which is not known yet,
(iii) on the l.h.s. of Eq. (13) we set the derivative of the amplitude w.r.t. Y
equal to zero and, (iv) we set the constant term and the coefficient of ∂z

on the r.h.s. equal to zero. This last condition gives rise to two equations
which determine both the anomalous dimension γs and the saturation mo-
mentum Qs(Y ). It is not hard to find that the leading Y -dependence of the
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saturation momentum is [3, 14–16]

Q2
s(Y ) = Λ2

QCD exp

[
√

2χ(γs)Nc

πβ(1 − γs)
(Y + Y0)

]

(14)

with Y0 an integration constant and where the anomalous dimension is given
by

χ(γs) + (1 − γs)χ
′(1 − γs) = 0 ⇒ γs = 0.372, (15)

which also leads to χ(γs)/(1−γs) = 4.88. The form of the amplitude will be
given shortly. We notice that, as a consequence of BFKL dynamics, γs is a
pure number. This number is smaller than γP = 1/2 which is the anomalous
dimension corresponding to the line of fastest increase in the (ρ, Y ) plane
(i.e. the Pomeron intercept line), a fact which one could have anticipated
by inspection of Fig. 4.

A couple of comments should be made with respect to the behavior
of the saturation momentum. The first is that it increases slower than in
the fixed coupling analysis (recall that in the latter scenario the increase
is exponential in Y [14, 15]). This is natural since the system evolves to
higher rapidities along the saturation line; thus the momentum scale in-
creases and the coupling decreases. We should perhaps mention here that
Eq. (14) is locally consistent with the fixed coupling result; indeed we have
d ln(Q2

s/Λ
2
QCD)/dY = [χ(γs)/(1−γs)]ᾱ(Q2

s). The second observation is that
at very high energies Qs becomes the same for every hadron. For example
in a large nucleus with atomic number A one expects an enhancement of the
saturation momentum by a factor of A1/3. For not too high rapidities this
is true, but this A-dependence which is hidden in the integration constant
Y0, becomes a subdominant effect for Y ≫ Y0.

Now we would like to go one step beyond and calculate the first preasymp-
totic correction to the saturation momentum given in Eq. (14). To this end,
we need to expand any running coupling appearing in the nonlinear equation
as

α(ρ) =
1

βρs
− z

βρ2
s

. (16)

Since different schemes correspond to different arguments of the running
coupling, it is obvious that they will lead to different equations due to the
second term of the expansion in Eq. (16). Still, one can show that also
the first correction to Qs is scheme-independent [34]. Choosing a scheme,
e.g. the B-scheme where it is a bit easier to perform the calculation, we need
to solve (approximately) a second order partial differential equation with
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Y -dependent boundary conditions. We find that the saturation momentum
now reads [15, 16]

Q2
s(Y ) = Λ2

QCD exp

[
√

2χ(γs)Nc

πβ(1 − γs)
(Y + Y0) −

3|ξ1|A
4

(Y + Y0)
1/6

]

, (17)

while the scattering amplitude for the dipole-hadron scattering for z > 0
(that is for dipoles such that r . 1/Qs) reads [15, 16]

T (z, Y ) = (Y + Y0)
1/6 exp [−(1 − γs)z] Ai

(

−|ξ1| +
z + c

A(Y + Y0)1/6

)

, (18)

where A = {[χ′′(γs)]
2Nc/[2πβ(1 − γs)χ(γs)]}1/6 with χ′′(γs) = 48.5, c is

a constant of order O(1) and Y0 is an integration constant which we will
occasionally neglect from now on. Since the effect of the nonlinear term is to
cut contribution coming from momenta smaller than Qs, it is not surprising
that the correction to Qs leads to an overall slower increase.

Now we notice in Eq. (18) that within a distance ∼ Y 1/6 (in logarithmic
units) above the saturation line the amplitude becomes a function of a
single variable z = ln 1/r2Q2

s. More precisely, by letting r → 1/Q (just for
illustration), the amplitude reads

T =

(

Q2
s

Q2

)1−γs
(

ln
Q2

Q2
s

+ c

)

, (19)

and we recognize the scaling form of the amplitude of the fixed coupling
analysis, except that now Qs is different. It is important to realize that the
scaling phenomenon persists even for momenta above Qs, even though the
diffusion radius, and therefore the region of validity of the scaling form, is
now ∼ Y 1/6 which is much smaller than the fixed coupling one (∼

√
Y ).

The good thing about the smaller diffusion radius is that the evolution is
less sensitive to ultraviolet contributions and therefore it is easier to perform
a numerical study of the nonlinear equation. One should mention here that
this scaling behavior is consistent with the interpretation of the small-x data
in electron-proton deep inelastic scattering [13], and, since there is no way
to get geometrical scaling from the DGLAP equations, there is a hint that
BFKL dynamics and saturation may have been observed.

Now one may ask the question what happens in the full NLO calculation.
As we have done so far in this Section, let us consider NLO BFKL dynam-
ics (for an introduction see [35]) together with the appropriate boundary
conditions. The problem is that that the NLO kernel is unstable as one can
see in Fig. 5; while the leading eigenvalue is positive, the NLO correction is
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Fig. 5. The characteristic function of the BFKL kernel as a function of the real

part of γ at leading order (left) and at next to leading order (right).

negative and dominates6. What happens is that the higher order corrections
of the BFKL kernel do not behave properly in the collinear limit, and such
collinear contributions should be resummed to all orders in the resummed
perturbation theory [35]. Collinear physics is described by the DGLAP
equations, and therefore one should ensure that the resummed BFKL ker-
nel matches with DGLAP in the limits γ → 0, 1. If we neglect quarks, the
matching condition reads

χr(γ = 0) = 1/ᾱ, (20)

and similarly for γ = 1. Eq. (20) is simply equivalent to the energy conser-
vation condition

γ(1) = 0 with γ(ω) =

∫

dz zωPgg(ω), (21)

with Pgg(ω) the gluon-gluon splitting function of the DGLAP equations.
We shall not elaborate more into this, but simply say that the resummed
kernel does not show any pathologies.

Due to the complicated form of the resummed NLO kernel it is im-
possible to give an analytic expression for the saturation momentum. One
observation is that at very high rapidity the full NLO result converges to the
leading order result with running coupling [36], since the coupling along Qs

decreases. Defining the logarithmic derivative of the saturation momentum

6 In fact this is true for real γ. The saddle point in the NLO case occurs at complex
values of γ leading to nonphysical oscillating cross sections.
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Fig. 6. The logarithmic derivative of the saturation momentum λs =
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sponds to the running coupling result given in Eq. (17) and line-e to the collinearly

resummed NLO result.

λs = d ln(Q2
s/Λ

2
QCD)/dY we easily find from the analytic expression (17)

that a typical value for Y ≃ 10 is λs ≃ 0.4. Taking into account the NLO
corrections we indeed find a correction of order O(α) ∼ 30%, as one would
estimate, and therefore λs ≃ 0.3 as exhibited in Fig. 6 [36]. This is also
what the fits based on QCD inspired saturation models give [11–13].

5. Running coupling versus Pomeron loop effects

Now we turn our attention to another type of corrections to the nonlinear
equation. In order to motivate the introduction of these corrections, let us
discuss some problems of the leading order evolution.

(i) The first problem is the extreme sensitivity to the ultraviolet. To
understand the issue assume the coupling to be fixed and that we have
evolved our system from zero rapidity up to rapidity Y and we know the
solution T (r, Y ). Now we try to reconstruct this solution by doing two (or
more) global evolution steps; we evolve from zero to, say, Y/2 to obtain
T (r, Y/2) and then considering T (r, Y/2) as an initial distribution we can
evolve up to rapidity Y to get T (r, Y ). We find that the solution obtained
from this procedure agrees with the one obtained from the single global
evolution step, only if we include (at least) the contribution from all dipoles
such that ln 1/r2Q2

s .
√
DsY in the initial condition at Y/2, with Ds =

2ᾱχ′′(γs). There is no reason to cut the dipoles that lie outside the diffusion
radius

√
DsY , but this algorithm reveals the width of phase space which is
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important for a self-consistent solution. The situation is quite embarrassing;
with increasing Y , the phase space opens up to smaller and smaller dipoles,
and the big numerical value of the coefficient Ds makes the problem even
worse. For instance, when one finds the saturation momentum to be a
few GeV, at the same time one is sensitive to dipoles of inverse size a few
orders of magnitudes above. This explains why in the numerical solutions,
to both the BK and the JIMWLK equation, one had to go very far to the
ultraviolet in order to obtain a reasonably accurate solution [10]. In the
running coupling case the situation is better, since the coupling decreases
at higher momenta and thus the effects of these seemingly non-physical
contributions are reduced. Indeed, as we saw in Sec. 4, the diffusion radius
increases much slower, more precisely is proportional to Y 1/6. We shall
come back to this later in this Section.

(ii) The second problem is the violation of unitarity. Say we want to
calculate the amplitude close to, but above, the saturation line in the two
ways we described in the previous paragraph. We have

1 > c = T ∼ 1

α2
Ta Tb, (22)

with Ta and Tb denoting the contributions of the two successive steps. It
is clear that for Ta < α2 the above equation imposes that the second step
satisfy Tb > 1. Thus, all the paths going through the region to the right
of the critical line in Fig. 4 violate unitarity in the intermediate steps [21].
Returning to the problem we discussed in (i), and noticing that the diffusion
radius extends to the region where the amplitude can be much smaller than
α2, we see that these contributions from the ultraviolet region must be
indeed non-physical.

(iii) The successive emissions in the BFKL evolution lead to the forma-
tion of gluon cascades inside the hadron wavefunction. The nonlinear term
in the BK equation corresponds to the merging of such cascades. Then one
may wonder how could we have many of these (necessary for saturation)
cascades. One possibility is that we have a large nucleus where there are
many valence quarks and antiquarks and which serve as the sources for the
generation of the gluon cascades. But of course this is just a particular
initial condition and it does not offer the dynamical solution to the prob-
lem. One needs to find how QCD gives rise to the increase in the number
of cascades and then one can start, for example, even from a single bare
dipole and end up with a fully saturated wavefunction. We complete the
theory by including the diagrams which were “forgotten” [23] and which
lead to the splitting of cascades. Such diagrams become important in the
region T ∼ α2 as needed in order to automatically solve the two problems
presented in (i) and (ii). Since now we have both splitting and merging of
cascades, we speak about loops of cascades, or loops of Pomerons.
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Let us now estimate the effect of these loops of Pomerons in the sat-
uration momentum Qs and the form of the amplitude around Qs. For
the moment we assume the coupling to be fixed. Since unphysical ultra-
violet paths need to be cut, we will solve the BFKL equation with two
absorptive boundaries, one in the infrared and one in the ultraviolet. Let
∆ = (ln 1/α2)/(1 − γs) be the distance between the two boundaries in the
logarithmic (ρ, Y ) plane, where, by definition, within ∆ the amplitude drops
from a value of order O(1) to a value O(α2). As usual, we make a change
of variables from ρ to z = ρ− ρs(Y ) and look for a Y -independent solution
to the BFKL solution. It has to obey

[χ(1 + ∂z) − λs ∂z]T (z) = 0, (23)

where we recall λs = dρs/dY . The real combination of solutions which
satisfies the boundary conditions is given by

T (z) ∼ exp[−(1 − γr)z] sin
πz

∆
, γi =

π

∆
, (24)

where γr and γi are the real and imaginary parts of γ. (We note that, in
contrast to the single boundary problem, this solution does not correspond
to any saddle point in the BFKL equation.) For a given value of α, and
therefore of ∆ or γi, the real part γr and the “intercept” λs are uniquely
fixed by

λs =
χ(γ)

1 − γ
with Im(λs) = 0. (25)

After we solve numerically the above transcendental equation, both the en-
ergy dependence of the saturation momentum and the amplitude are deter-
mined. In case the boundary separation is extremely large, or equivalently
the coupling α is extremely small, Eq. (25) leads to

λ

ᾱ
=

χ(γs)

1 − γs
− π2(1 − γs)χ

′′(γs)

2 ln2 α2
. (26)

Notice that the relative correction is proportional to 1/R2
eff with Reff ∼

ln 1/α the effective transverse space for evolution, a feature which is true in
general7.

The scaling behavior of the amplitude as given in Eq. (24) will not per-
sist at very high values of rapidity because our system becomes stochastic.
Pomeron loops modify the evolution in the region where the amplitude T is

7 For example one can easily check that this property holds in the running coupling
expression (17), with Reff ∼ Y 1/6 being the diffusion radius.
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of order O(α2) or equivalently the target hadron dipole density is of order
O(1). In this low-density regime fluctuations become important and they
lead to stochasticity. Thus different events lead to different profiles of the
scattering amplitude as a function of r2 and at a given fixed rapidity Y [22].
These profiles are of the same form but shifted with respect to each other
according to a probability density, which at a first approximation can be
taken as a Gaussian with a width proportional to

√
Y . It is the averaging

over all the events which leads to the violation of geometrical scaling. At
this point it is useful to realize that the BK equation is deterministic and it
corresponds to a Mean Field Approximation.

So now we are ready to reach our final goal. Both running coupling
effects and Pomeron loop effects seem to be important and for practical
purposes one cannot really rely on the leading order (fixed coupling) BK
equation. Given the fact that there are no QCD evolution equations which
include both effects, we are naturally forced to look if one of the two effects
dominates. A first simple estimate seems to favor the Pomeron loops since,
as we have just seen, they induce corrections which are of order O(1/ ln2 α),
while running coupling corrections are a part of NLO corrections8 which
induce corrections of order O(α). However, instead of these simple esti-
mates, one would like to have a better control on such issues, for example
by performing numerical solutions. This becomes a crucial issue, since the
outcome will turn out to be not the expected one, that is, running coupling
effects dominate the evolution.

Since we do not know the full effective theory, one way to proceed is to
construct a model which contains both types of corrections, satisfies basic
properties and principles of small-x evolution (such as Lorentz invariance,
emission of a single gluon under a step dY in rapidity, saturation of the
emission rate at high gluon density,...) and is simple enough to be solved
numerically. Such a model has been constructed [28], and in the following
we compare the results obtained from the numerical analysis of this model
when (i) both Pomeron loop and running coupling effects are included and
(ii) only running coupling effects are included. In the left panel in Fig. 7 we
show the corresponding results for the logarithm of the saturation momen-
tum lnQ2

s/Λ
2
QCD as a function of rapidity Y , and we see that there is no

difference between the two cases up to super-high values of the rapidity. In
the right panel in Fig. 7 we show the corresponding results for the “reduced”
amplitude, i.e. the amplitude without its dominant exponential scaling be-
havior, as a function of the logarithmic distance from the saturation line,
i.e. as a function of ln 1/r2Q2

s = ρ − ρs. Again we see that the difference
betwen the two cases is tiny for all considered values of rapidity. Notice also

8 This is a bit naive estimate since bubble diagrams have been resummed to all orders.
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Fig. 7. Left: The logarithm of the saturation momentum with Pomeron loops (PL)

included and in the Mean Field Approximation (MFA) for various values of the β-

function. One cannot distinguish between the two cases for the two largest values of

β. Right: The reduced amplitude as a function of the logarithmic distance from the

saturation line with Pomeron loops included and in the Mean Field Approximation.

that variations of the particular model were considered and still there was
no change in the outcome9.

Therefore we arrive at the conclusion that up to very high values of
rapidity, the evolution with both Pomeron loop and running coupling effects
included is practically the same to the one where only running coupling
effects are taken into account. This is a highly nontrivial statement since,
for the same initial conditions, in a fixed coupling treatment the numerical
solutions show that the Pomeron loops strongly modify the results of the
BK equation [37].

So now it becomes natural to try to explain why the running coupling
effects dominate the evolution. Let us compare the corrections induced by
the Pomeron loops and the running coupling in the saturation exponent λs.
When Pomeron loops are considered the correction is δλs/λs ∼ 1/R2

eff , with
the effective transverse space for evolution being the distance between the
two boundaries; Reff ∼ ln 1/α. When running coupling effects are consid-
ered the relative correction is again δλs/λs ∼ 1/R2

eff , but now the effective

transverse space for evolution is the diffusion radius; Reff ∼ Y 1/6. So, as said
earlier, it seems that loops of Pomerons might be more important. However

9 We mention that slightly asymmetric initial conditions, mostly resembling virtual
photon - hadron scattering, were used.
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the diffusion radius grows very slowly with rapidity10, and what happens in
practice is that there is not enough longitudinal space to become equal to
(or greater than) the two-boundary width.

We might say that the final outcome is very fortunate, since the analysis
of the BK equation (even in its running coupling version) which is deter-
ministic, is much easier than the analysis of the Pomeron loop equations
which represent a stochastic evolution.
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